DataViz Hub

Free Data Visualization APIs & Chart Libraries

Discover top-notch free tools to create stunning charts, graphs, and interactive data visualizations. Perfect for developers, analysts, and anyone needing to turn data into actionable insights—no expensive licenses required!

Library Comparison Radar Chart

What We're Measuring

  • Ease of Use: How quickly you can get up and running
  • Customization: Flexibility to tweak designs
  • Performance: Handling large datasets smoothly
  • Chart Types: Variety of visualization options
  • Community Support: Docs, forums, and updates

Free Chart Libraries

Chart.js

Free

Open-source JavaScript library with simple setup and tons of pre-built chart types—perfect for beginners!

Highlights

  • • Easy to implement with minimal code
  • • Supports 8+ common chart types
  • • Responsive design out of the box
  • • No rate limits

Pros & Cons

Pros

• Super beginner-friendly
• Lightweight (11KB gzipped)

Cons

• Limited advanced customization
• Less flexible for unique designs

Open Source JavaScript Multiple Charts

D3.js

Free

The most flexible data visualization library—build completely custom charts and interactive experiences from scratch.

Highlights

  • • Total design freedom
  • • Handles complex data transformations
  • • SVG/Canvas rendering
  • • Massive community support

Pros & Cons

Pros

• Unlimited customization
• Industry standard tool

Cons

• Steeper learning curve
• Requires more code

Data Visualization Custom Completely Free

ECharts

Free

Baidu's open-source library optimized for big data—blazing fast rendering even with millions of data points.

Highlights

  • • High performance with large datasets
  • • 20+ chart types including 3D options
  • • Built-in themes and animations
  • • Mobile-friendly

Pros & Cons

Pros

• Blazing fast for big data
• Rich interactive features

Cons

• Some docs need translation
• Heavier file size

Baidu Open Source Big Data High Performance

Plotly.js

Free

Interactive scientific visualization library—ideal for data analysis, research, and technical presentations.

Highlights

  • • Advanced scientific charts
  • • Built-in animations and zoom
  • • Export to multiple formats
  • • Works with Python/R too

Pros & Cons

Pros

• Great for scientific data
• Powerful interactivity

Cons

• Larger file size
• Overkill for simple charts

Interactive Scientific Free

Highcharts

Paid

Professional enterprise-grade library with premium features—free for non-commercial use only.

Important Note

Highcharts requires a commercial license for business use. Personal/non-profit projects can use it free, but commercial sites need to purchase a license.

Get Started Guide

Follow these simple steps to start using any of these free chart libraries in your project.

  1. 1

    Install the Library

    Use npm or include via CDN for quick setup

  2. 2

    Prepare Your Data

    Format your data to match the library's requirements

  3. 3

    Create Your Chart

    Use the library's API to render your visualization

  4. 4

    Customize & Deploy

    Tweak styles and add interactivity before launching

View Full Tutorials

Quick Start Code Examples

Create a Line Chart with Chart.js

// 1. Install Chart.js
// npm install chart.js

// 2. Import the library
import Chart from 'chart.js/auto';

// 3. Create your chart
document.addEventListener('DOMContentLoaded', function() {
  const ctx = document.getElementById('lineChart').getContext('2d');
  
  new Chart(ctx, {
    type: 'line',
    data: {
      labels: ['January', 'February', 'March', 'April', 'May'],
      datasets: [{
        label: 'Monthly Sales',
        data: [65, 59, 80, 81, 56],
        borderColor: '#3b82f6',
        backgroundColor: 'rgba(59, 130, 246, 0.1)',
        tension: 0.3,
        fill: true
      }]
    },
    options: {
      responsive: true,
      plugins: {
        legend: {
          position: 'top',
        },
        title: {
          display: true,
          text: 'Monthly Sales Trend'
        }
      }
    }
  });
});

Create a Bar Chart with D3.js

// 1. Install D3.js
// npm install d3

// 2. Import the library
import * as d3 from 'd3';

// 3. Create your bar chart
document.addEventListener('DOMContentLoaded', function() {
  // Sample data
  const data = [
    { category: 'A', value: 40 },
    { category: 'B', value: 60 },
    { category: 'C', value: 30 },
    { category: 'D', value: 70 },
    { category: 'E', value: 50 }
  ];

  // Set up dimensions
  const width = 400;
  const height = 250;
  const margin = { top: 20, right: 20, bottom: 30, left: 40 };

  // Create SVG element
  const svg = d3.select('#barChart')
    .append('svg')
    .attr('width', width)
    .attr('height', height)
    .append('g')
    .attr('transform', `translate(${margin.left}, ${margin.top})`);

  // Create scales
  const xScale = d3.scaleBand()
    .domain(data.map(d => d.category))
    .range([0, width - margin.left - margin.right])
    .padding(0.1);

  const yScale = d3.scaleLinear()
    .domain([0, d3.max(data, d => d.value)])
    .range([height - margin.top - margin.bottom, 0]);

  // Add bars
  svg.selectAll('rect')
    .data(data)
    .enter()
    .append('rect')
    .attr('x', d => xScale(d.category))
    .attr('y', d => yScale(d.value))
    .attr('width', xScale.bandwidth())
    .attr('height', d => (height - margin.top - margin.bottom) - yScale(d.value))
    .attr('fill', '#8b5cf6');

  // Add axes
  svg.append('g')
    .attr('transform', `translate(0, ${height - margin.top - margin.bottom})`)
    .call(d3.axisBottom(xScale));

  svg.append('g')
    .call(d3.axisLeft(yScale));
});

Ready to Start Visualizing Your Data?

All these libraries are free to use for personal and commercial projects (except Highcharts for commercial use). Pick the one that fits your needs and start creating stunning visualizations today!